

木材成分とリグノフェノール

木材の成分はリグニンとセルロースからなる。リグニンは木を補強する(ビルのセメントのような)役割を果た し、セルロースは木の骨組みです(ビルの鉄筋)の役割。このリグニンを化学修飾したものをリグノフェノール 。このリグノフェノールは石油代替資源として期待。

☆ リグニン ⇒ リグノフェノール

石油代替資源として期待!!

隠岐バイオマス(リグノフェノール)の取り組み

隠岐の島町は、切り捨て間伐材、松くい虫被害木等の島内未利用材からバイオマス(リケノフェノール)を抽出し、本事業では、 含浸薬剤(含浸材)と難燃性樹脂を商品開発。この事業は里山保全に繋がる。

【島内の未利用材を原料】

■切り捨て間伐剤

▲リグノフェノール製造実証プラント(隠岐)

【リグノフェノール】

【里山保全】

間伐が進み、松くい虫被害を防ぐ ⇒安定的なスギ・クロマツの生産

▲スギ

【バイオマス商品】

▲LP含浸材 ▲含浸材ウッドデッキ ▲含浸材看板(島内) ▲土木資材

(1) 含浸薬剤(含浸材)の開発商品(越井木材工業(株))

自然素材を用いた防腐性・防蟻性・寸法安定性の高い含浸材の開発

▲電子部品・カバーケース

(2)難燃性樹脂の開発商品(安井㈱)

自然素材を用いた加工性・難燃性・透明性をもった樹脂の開発

⇒ 里山保全・エコアイランド化・新産業の創出(雇用創出)

(1)リグリフェノール含浸材の開発

共同:越井木材工業 株式会社

越井木材工業株式会社

- · <u>創 立 昭和23年6月</u>
- · <u>資 本 金</u> 30,500万円
- · <u>代 表 者</u> 越井 潤
- · <u>従業員数</u> <u>200人</u>

▲ スーパーサーモ

- 事業内容 木材の防腐防蟻・防虫処理、木材の不燃・防火処理 木材の寸法安定処理、木材の熱処理(サーモウッド)
 木材サッシの製造・販売、アカシカ集成材床板、 木材の接着(パネル・合板)
- · <u>所 在 地 【本社】大阪府大阪市住之江区平林北1-2-158</u> 【大阪本社》【東京事務所》【関東工場》【関東第2工場】 【名古屋営業所》【岸和田営業所》【九州営業所】
- ・ 関連会社 (株)コシイプレザービング、
 PERUSAHAAN KOSINAR SDN.BHD
 サバ造林株式会社、株)コシイウッドシュウションズ
 KM Hybrid Plantation SDN. BHD.
 KOSHII MAXELUM AMERIC A. INC.

▲ マクセラムデッキ

・主力製品

過去の実績と課題

平成25年度の林業加速事業(島根県)において、リグノフェノールの含浸材は防腐効果があることが分かった。ただし、商品化において、コストの問題とさらなる物性評価が課題。

【リグノフェノール含浸材の防腐試験データ(東京都立産業技術センター提供)】

試験体の名称	腐朽操作試験体 質量減少率(%)
A リグノフェノール含浸材	3.7
B リグノフェノール+硬化剤 含浸材	3.4
C レゾールリグノフェノール含浸材	2.3
無処理材	30.9

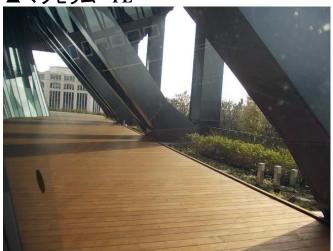
▲ 防腐試験様子

※3%以下がJIS規定の木材保存剤の基準

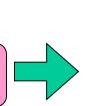
▲含浸材のウッドデッキ

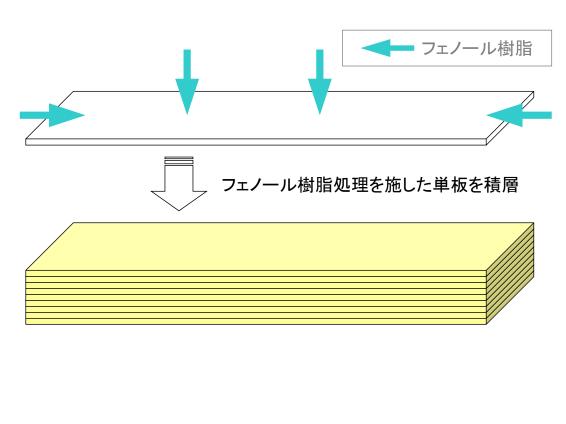
▲含浸材 土木資材 活用

▲含浸材 看板(隠岐ジオパーク)


⇒ 本事業目的: コストの問題とさらなる物性評価が必要 ①従来品と混ぜる、②物性評価

リグノフェノールを用いたマクセラム-PLの開発


マクセラム-PL: フェノール樹脂を木材に含浸させ、腐れ・割れ・反りの問題を解消したデッキ床板



▲ マクセラム - PL

▲ マクセラム-PLのウッドデッキ

石油由来のフェノール樹脂製品

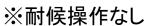
自然由来のリグノフェノール

検討方法について

① 試験条件

表.含浸液の混合比率(%)

世段はの担合(04)


	試験体の混合制合(%)				
	リグノフェノール	フェノール樹脂			
А	100	0			
В	80	20			
С	50	50			
D	20	80			
E	無処理材				

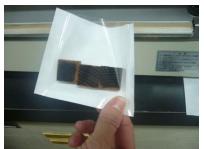
木材 (スギ) に含浸

- •室内防腐性能試験 JIS K 1571
- •室内防蟻性能試験 JIS K1571
- •寸法安定性試験(吸湿性試験) JIS Z 2101

▲含浸薬剤の減圧加圧注入装置

▲ LP含浸材

防腐性試験結果について

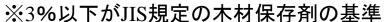

■ 室内防腐性能試験結果(試験体の重量減少率)(JIS K 1571)

	試験体の混合割合(%)		腐朽操作試験体	本 質量減少率(%)
	リグノフェノール	フェノール樹脂	カワラタケ (白色腐朽菌)	オオウズラタケ (褐色腐朽菌)
Α	100	0	4.8	2.6
В	80	20	3.1	2.4
С	50	50	4.6	1.1
D	20	80	1.9	0.5
E	E無処理材		21.8	49

※3%以下がJIS規定の木材保存剤の基準

菌の植え付け

試験片の設置


現在(60日経過の様子)

- 試験体はいずれも、防腐効果あり。
- 試験体の重量減少は、白色腐朽菌>褐色腐朽菌

試験防蟻性試験について

■ 室内防蟻性能試験結果(試験体重量減少率、シロアリ死虫率)(JIS K 1571)

	試験体の混合割合(%)			T + 表 (0/)
	リグノフェノール	フェノール樹脂	重量減少率(9	%) 死虫率(%)
Α	100	0	2.9	19.8
В	80	20	3.4	17.3
С	50	50	2.8	16.4
D	20	80	2.3	18.7
E	無処	理材	12.7	14.3

室内防蟻試験の様子

試験体はいずれも、防蟻効果あり。

吸湿性試験(寸法安定性試験)ついて

■ 吸湿性試験(寸法安定性試験)(木口面膨張率)(JIS Z 2101)

	試験体の混合			
	リグノフェノール	フェノール樹脂	相対》 70%	显度 90%
Α	100	0	3.0	4.7
В	80	20	3.3	4.4
С	50	50	2.6	3.2
D	20	80	3.9	4.0
E	無処	2.2	3.0	

・同条件で評価:いずれの試験体の**寸法安定性は低い**。 (膨張率:本試験体>無処理材)

原因:木材深部まで含浸できていない。

- → リグノフェノールの分子量が高い: M.W. 3000
- → フェノール(M.W.400)が木材に浸透するのをリグノフェノールが阻害!?

対策1⇒リグノフェノールの分子量を低くする。 対策2⇒フェノールを含浸後、リグノフェノールを含浸

相対湿度75%(塩化ナトリウム飽和水溶液)調湿中。

リク、ノフェノール含浸材のヒアリンク、・アンケート調査

- アンケート数: 2000通: 返信294通、ヒアリング数: 8社
- 特に設計事業者が環境意識が高く、国産材の利用に積極的。
- ・求める性能:製品としての品質は当たり前。耐候性・耐久性の高い自然物。木材のデザイン性が損な われなくて木痩せしない防腐剤、メンテのしやすさ。安全性、自然物であること。
- コストや物性の課題がクリアすれば、利用検討あり(コスト1.2~1.5倍)[アンケート30%、7/8社]
- 使用木材製品:東京港区・・・防腐剤、含浸材、ウッドデッキ 設計会社・・・防腐剤、含浸材
- ・東京港区オリンピック関連で、港区は建設ラッシュ。その中で木材建築物の需要は高い。
- ・みなとモデルの活用[国産材利用促進システム])。自治体と上手く組むこと。

☆ 国産材活用推進(みなとモデル)

☆ 2020年東京オリンピック・パラリンピック

三本柱:「スポーツ」「文化」『環境』

【推進項目】

- ・大会施設や選手村等の整備・改修
- ・仮設建築物にも木材を積極的に使用
- ・関係施設の建具・床材・家具等
- ・日本の伝統的な建築様式の導入
- •CLT(直交集成板)や耐火集成材等を活用
- 資材の安定供給体制の整備
- ・木質バイオマス・食品廃棄物を原料とした再生可能なエネルギーを大会施設や選手村に
- バイオプラスチックの活用

(2)リグノフェノール難燃性樹脂の開発

共同:安井 株式会社

安井株式会社〈会社概要〉

- · <u>創 立 昭和5年5月</u>
- ・ <u>資 本金 9,500万円</u>
- ・ <u>代 表者 松田 哲</u>
- · <u>従業員数</u> 300人
- · <u>敷 地</u> 74,000m²
- ・ <u>事業内容</u> <u>射出成形、発泡スチロール成形、</u> <u>シール・ラベル印刷・一般印刷、</u> 各種包装・資材の製造販売
- · <u>所 在地【本社】</u>

宮崎県東臼杵郡門川町大字加草2725

【鹿児島工場·営業所】【福岡営業所】

【日南営業所】【延岡営業所】【日向営業所】

・ 関連会社 安井プラスチック(株)(大分県豊後大野市)

<u>(有)ヤスイ包材(鹿児島県鹿児島市)</u>

・ 主要取引 旭化成(株)グループ、川澄化学工業(株)

東郷メディキット(株)、南日本ハム(株)

(株)くらこん他

過去の実績と課題 その1

平成25年度に隠岐リグノフェノールはポリカーボネイトの難燃性添加剤として有効〔難燃性向上(V0達成) や加工性向上した(ものづくり中小企業事業者試作開発支援事業)〕。ただし、商品化の課題として、強度 〔曲げ、伸び〕)や透明性の向上。 用途ターゲット:電子部品やカバーケース等。

▲ リグノフェノール難燃性樹脂

従来難燃性樹脂の課題

- 加工性が著しく低下
- 透明性の喪失
- コストアップ
- 環境負荷が高い (ハロゲン系)

電子部品・カバーケース等

要求物性:難燃性(発火対策) 透明性、加工性

⇒ 本事業目的: 強度物性(伸び・曲げ)と透明性の向上

- ①原料検討
 - 中粘度ポリカーホ、ネイトにかえる(強度対策)
 - •アセチル化リグノフェノールや広葉樹リグノフェノールを用いる

(ポリカとの相溶性向上)

② リグノフェノールのアセチル化の検討

【各種物性試験】

加工性試験(MRF) [JIS K 7210] 引張強さ [ISO 0572] 伸び(破断) [ISO 0572] 曲げ強さ [JIS K 7171] 曲げ弾性率 [JIS K 7171] 燃焼性 [UL94V試験]:

V0(最高基準)→V1→V2(最低基準)

過去の実績と課題 その2

【競合する難燃性樹脂】

・商品名「ザイロン」:旭化成ケミカルズ(株)

・・・価格600~800円/kg

▲ザイロン(旭化成ケミカルス・HP参考)

【 (参考) 難燃性樹脂を構成する各原料価格】<樹脂+難燃剤=難燃性樹脂>

「リグノフェノール」(量産設定価格)・・・価格1300円/kg ・難燃剤

「リン酸エステル」 ・・・ <u>価格500円~1,750円/kg</u>

・汎用性樹脂 「ポリカーボネート(PC)」 ・・・価格300円/kg

【平成25年度実績 リグノフェノール難燃性樹脂データ】

【難燃性樹脂を構成する各原料価格】<樹脂+難燃剤=難燃性樹脂>

「リグノフェノール」価格1300円/kg x10%=130円/kg ・難燃剤

「リン酸エステル」 価格1,750円/kg x10%=175円/kg

「ポリカーボネート(PC)」価格300円/kgx80%=240円/kg ・汎用性樹脂

<u>量産時の難燃性樹脂コンパウンド :約545円/kg</u>

検討方法 全体の流れ

加工性試験(MFI) [JIS K 7210] 引張強さ [ISO 0572] 伸び(破断) [ISO 0572] 曲げ強さ[JIS K 7171] 曲げ弾性率 [JIS K 7171] 燃焼性[UL94V試験]

【3】射出成形 【1】原料混合 【2-1】混練 【2-2】ペレット化 【4】物性評価 原料選定 各評価項目選定 混鍊条件 成形条件 配合比率 則定条件設定 原料処理 規格值設定 **MMW 20%** PC樹脂

単軸押出機

射出成形機

金型

試験機(MFI)

物性試験

1 原料検討(ポリカやリグノフェノール種類検討)

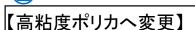
以下の配合で難燃性樹脂を作成し、各種物性試験を行った。

		H25			本事業		
	ザイロン	ポリカ低	リグン針	ポリカ高	リグン針	アセチルーリク・ノ針	
				3	4	5	6
難燃性樹脂	難燃性樹脂A	100%					
ホ°リカーホ゛ネイト	低粘度		100%	80%			
ለ ነ///─ለ ሉ1ኮ 	中粘度				100%	80%	80%
	リグノフェノール(針葉樹)			10%		10%	
	アセチル リグノフェノール(針葉樹)						10%
難燃剤	リグノフェノール(広葉樹)						
	アセチル リグノフェノール(広葉樹)						
	リン酸エステル			10%		10%	10%
難燃助剤	ドリップ防止剤PTFE			0.3%		0.3%	0.35%
		難燃性樹脂 各種物性試験					
試験項目	単位			美田 冰川土 1911 月日	台俚物注:	i 八 尚 欠	
加工性試験(MRF)	g/10min	0.5	2.7	24	2.4	26	12.5
引張強さ	Мра	71	62	46	62	58	69.3
伸び(破断)	%	33	68	2	57	2	66
曲げ強さ	MPa	120	107	51	104	97	115
曲げ弾性率	MPa	2730	2186	2841	2240	3020	2730
燃焼性試験〔UL94V〕	判定	V0	V2	V0	V2	V0	V0

① 原料検討による各種物性試験

			H25		本事業		
配合	ザイロン	ポリカ低	①リクン針	ポリカ高	②リクン針	③アセチルーリク・ノ針	
試験項目	単位	難燃性樹脂試験 各種物性試験					
加工性試験(MRF)	g/10min	0.5	2.7	24	2.4	26	12.5
引張強さ	Мра	71	62	46	62	58	69.3
伸び(破断)	%	33	68	2	57	2	66
曲げ強さ	MPa	120	107	51	104	97	115
曲げ弾性率	MPa	2730	2186	2841	2240	3020	2730
燃焼性試験〔UL94V〕	判定	V0	V2	V0	V2	V0	V0

①
【H25: リゲノフェノール添加)】
・加工性 : 9倍
・引張強さ : 0. 7倍


・ 伸び : 0. 03倍

曲げ強さ : 0.5倍

・曲げ弾性率 : 1.3倍

難燃性 : 最高基準達成

H25ポリカ低とリグノ針の比較

·加工性 : 11倍

・引張強さ: O. 9倍

伸び : 0.03倍

曲げ強さ: 0.9倍

·曲げ弾性率 : 1.3倍

· 難燃性: 最高基準達成

ポリカ高と本事業リグノ針の比較

【アセチル-リグノ化を添加】

•加工性 : **5倍**

・引張強さ : 1.1倍

・伸び : 1. 2倍

・曲げ強さ : 1.1倍

・曲げ弾性率: 1. 2倍

· 難燃性:<mark>最高基準達成</mark>

【ザイロン比較】

・加工性 : 25倍 ・引張強さ : 0.98倍

・伸び : 2倍

・曲げ強さ:0.96倍

曲げ弾性率: 1, 0倍

ポリカ高とアセチル-リケノの比較 ザイロン

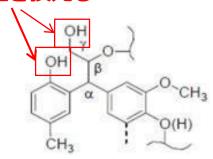
サーイロンとアセチル-リグノの比較

- ・②ポリカの変更と③リグノフェノールのアセチル化 ⇒ 引張強さ・伸び・曲げの課題を解決!
- ・従来品(ザイロン)と比較しても物性(加工性・伸び)の高い難燃性樹脂の製造条件を確立!!

リク・ノフェノールのアセチル化の検討

120℃,大気

リグノフェノール+無水酢酸+貧溶媒 ⇒収率約95%


⇒ アセチル化 リグノフェノール

無水酢酸((CH3CO)2O) 中にリグノフェノールを溶解させ、貧溶媒を添加、 120°C加熱し一定時間保持。精製し、アセチル化リケブフェノールを抽出(1日)。

【難燃性樹脂コンパウンド試作結果】

	a	b	С
ポリカーボネート	80%	80%	80%
リグノフェノール (未処理)	10%	-	-
リグノフェノール (アセチル化処理)	-	10%	10%
難燃剤 (リン酸エステル)	10%	10%	10%
難燃助剤 (ドリップ防止剤PTFE)	0.3%	0.3%	0.3%
安定剤 (リン系酸化防止剤A)	-	-	0.5%
外観写真		YASUKAN	YASUI co. im

アセチル基(CH₃CO-) で置き換える

リグノフェノール構造

アセチル化処理機器

⇒ リグノフェノールのアセチル化の効率化を実施。 リグノフェノールのアセチル化は難燃性樹脂の透明性を向上!

リク、ノフェノール難燃性樹脂のヒアリンク、調査

- 本試験データを用いてヒアリング:1社 (樹脂メーカー:出光ライオン・コンポジット(株))
 - 【ヒアリング内容】
 - 本物性データでも用途あり。
 - 透明だったら便利な難燃性樹脂:ボディーケースやその部品
 - 透明・難燃性: コネクター、モジュラープラグ(電話で利用)
 - 公共部材: 道路・スタジアム・アーケードの透明部材(難燃性必要あり)
 - ⇒10万トン用途あり。植物由来のもの需要あり。
 - 不透明・難燃性: OA機器のPC樹脂 ABS樹脂を中心に利用
 - ・OAプリンター・コピー機器の環境規格の取得(ラベル: EPEAT等)

⇒30万トン用途あり。植物由来のもの需要あり。

【難燃性が求められている商品】

▲ボディーケース

▲コネクター

▲モジュラープラグ

▲ 道路の遮音壁

▲ 熱転写プリンタ用ラベル

地元住民及び関係業者への普及啓発

隠岐の島町では、リグノフェノールから含浸材・難燃性樹脂以外にも塗料や接着剤の商品開発を実施し、役場等に導入してい ます。また、企業ヒアリングや環境普及・地域イベント等を通して、地元住民や関係業者へ普及啓発を実施しています。

テーブル(役場国民年金)

開発中のアンティーク風机

壁板(スギ材)

腰板(役場内)

1月19~21日 企業ヒアリング、市場調査(関西方面)

2月5日 緑のコンビナート推進協議会(第2回)

いきいき祭り参加

アグリビジネス展示(ビッグサイト)

安井君が対応

協議会関係者約40名参加

林野庁長官プラント視察

商工青年部研究会

東京港区ヒアリング

【活動状況報告】	1		
期日	項目	内 容	備考
6月15日	隠岐の島町ウルトラマラソン大会 リグノ材PR	ウルトラマラソン大会優勝者にLPの盾贈呈	緑のコンビナート推進協議会で実施
6月16日	緑のコンピナート推進協議会(第1回)	リグノフェノール事業の取組状況発表	協議会関係者約40名参加
10月9日	リグノ材導入(隠岐の島町役場)	テーブルカウンター、テーブル、腰板等	緑のコンビナート推進協議会で施工
10月17日	中山間地域研究フォーラム(松江市)	隠岐産リグノフェノールを用いた木材接着試験	中山科長が発表
10月26日	隠岐の島町いきいき祭り参加	リグノ材の展示	安井、岡田が参加
11月2日	隠岐ブロック商工会青年部研修会	バイオマスの現状と隠岐での取組を発表	吉田先生(委員)発表
11月12~14日	アグリビジネスフェアー出展(東京)	リグノフェノール材展示	安井他4名参加
11月15日	林野庁長官来島	布施プラント視察	藤井社長他3名で対応
11月16日	環境展示会出展(松江市)	リグノ材の展示	安井君参加
11月18日	バイオマス産業都市選定授与式	隠岐の島町選定、(LPマテリアル化含む)	松田町長、藤井副会長出席
11月19日	木質バイオマス加工・利用システム開発委員現地視察	LPプラント視察、技術指導(木村先生、川越氏)	役場、藤井基礎(安井、岡田)対応
12月3日	中国経済産業局長来島	布施プラント視察	安井、岡田、藤本が対応
12月11日	エコプロダワツ2014展示会	エコ商品の市場ニーズ等の視察	安井君参加
12月12日	バイオマス・リファイナリー情報交換会(広島)	リグノフェノール研究開発状況発表	藤本、岡田が参加
12月17日	大阪ガス来島	布施プラント視察	安井、岡田、藤本が対応
1月13~16日	企業ヒアリング、市場調査(関東方面)	6社訪問(港区、公園メーカー、建築設計等)	安井、岡田が対応

3社訪問(建築設計等)

リグノフェノール事業の取組状況発表

企業ヒアリング